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1    Introduction 

Specialization is a growing area of interest in the op- 
erating systems community. OS components special- 
ized to some particular circumstance can offer en- 
hanced performance, functionality, or both. Compli- 
mentary partial evaluation techniques for automati- 
cally specializing programs are also reaching matu- 
rity. However, the problem of managing specializa- 
tion remains: how to specify a specialization, when 
to apply it, and when to remove it. This problem 
is particularly important for long-running programs 
such as operating systems, where specializations are 
likely to be temporary. 

This paper presents an object-oriented framework 
for specifying specializations in long-running pro- 
grams such as operating systems. This model is based 
on the following concepts: 

• Inheritance allows replacement implementations 
of of member functions. We thus use a graph of 
sub-clässes to specify a set of potential special- 
izations of a given facility by replacing generic 
implementations with specialized implementa- 
tions. 

• Specializations in long-running programs are 
temporary, because the particular circumstances 
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that permit the use of a specialized implemen- 
tation are likely to change eventually. We thus 
support temporary and even optimistic special- 
izations [16]. 

• Ensuring that it is valid to use a specialized im- 
plementation can be more difficult than creating 
the specialized implementation [16]. We thus use 
a formal method to specify when a specialization 
is valid. This lets us automatically detect when 
specialization circumstances have changed [8], 
and also automatically generate specialized im- 
plementations using partial evaluation [6, 5]. 

Section 2 describes our specialization model, which 
is applicable both in 00 operating systems and in 
legacy kernels. Section 3 describes compilation tech- 
niques for this model. Section 4 briefly describes some 
closely related work, and Section 5 concludes this po- 
sition paper. 

2    Specialization Classes 
We first describe our model using an example, and 
then explain some details. Figure 1 illustrates special- 
ization of a file system: the open file object FS, which 
understands the operations read() and writeQ, is 
said to be the target of the specialization. 

Following modern usage [1, 14], we use the term 
type to refer to the interface exposed by an object 
and the term class to refer to the method code and 
the instance variables that implement that interface. 

DTK) QUALITY INePBCTEP,! 



Hence, the type of the file describes the fact that it 
can be read and written; in an 00 system the type is 
merely the type of the FS object, and in a legacy OS 
coded in a non-00 language it is the type signature 
of the set of procedures that provides the file system 
functionality. 

The specialization plan is a definition of all the ways 
in which the file system can be specialized. In each 
specialization, some of the methods of the target are 
replaced by various specialized implementations. The 
methods specialized by the specialization plan are 
the set of specializable functions that are replaced by 
various specialized implementations. Thus the spe- 
cialization plan encapsulates the specializations to be 
applied to the system, independent of the degree of 
encapsulation provided by the system's source lan- 
guage. 

The various specialization options within a plan 
are organized into a partial order of specialization 
classes according to the relation "more specialized 
than." Each specialization class adds some degree of 
specialization to the classes it inherits from, e.g. NFS 
is a specialization of generic, and NFS/exclusive is a 
specialization of both NFS and exclusive. Each spe- 
cialization class describes a specialization state that 
the specialized facility can achieve. The "generic" - 
specialized state is the unique top of the partial order 
of specialization classes. 

Each specialization class specifies the conditions 
that make the specialization applicable, and a sub- 
set of the members in the specialization plan to be 
replaced with specialized methods. The conditions of 
a specialization class imply the conditions of each of 
its parents. The truth of the conditions can change 
over time, and thus must be monitored as described 
in Section 2.1. 

Specialization plans are compiled into specialized 
object generators, which when new'd create special- 
ized objects as shown in Figure 1. A specialized ob- 
ject is a wrapper around the object being specialized. 
The specialized object represents the state of an in- 
stance of a specialization plan, i.e., bindings from the 
values in the conditions to data in the target, and 
bindings from the specializable functions to the spe- 
cialized methods. We view the type of the target ob- 
ject as being unchanged by the specialization; from 
the point of view of the client, the same set of mes- 
sages is understood, and they have the same effects. 
Thus, the type of the specialization object is stati- 
cally determined by the type of the target. 

In contrast, the class of the object changes dynam- 
ically according to the truth of the conditions, and 
causes changes in the method code bound to the spe- 

cializable functions. Looking a little more closely, 
it may in fact the the case that the type changes: 
for example, if the conditions indicate that a certain 
message will never be sent, we might create a special- 
ized object that eliminates that method altogether! 
However, our methodology guarantees that any such 
changes in type will be invisible to the client. 

2.1 Conditions: Quasi-Invariants 

Conditions specify invariants. A true invariant is a 
classical invariant: a property of the system that is 
guaranteed to be true at all times, stated as an ex- 
pression using system variables that must evaluate to 
"true." A quasi-invariant is a property that is likely 
to remain true, but may become false at some future 
time. Specifying conditions using invariants allows 
the following key steps in the specialization process 
to be automated. 

Invariants can be used by partial evaluators to 
automatically prepare a specialized implementation 
that has been optimized using the invariants. Our use 
of invariants for specialization was originally inspired 
by the invariant input specification for Tempo [6, 5], 
a powerful partial evaluator for C. Partial evaluation 
to exploit specialization gives us a formal relationship 
between the conditions and the optimized implemen- 
tation. 

Partial evaluation is independent of whether a con- 
dition is an invariant or a quasi-invariant. How- 
ever, specializations that depend on quasi-invariants 
are not always valid, but instead depend on some 
temporary circumstance that begins when the quasi- 
invariants become true, and ends when the quasi- 
invariants become false. For instance, file system ac- 
cess can be optimized using a quasi-invariant that the 
file is not shared [16], but this condition can change 
unexpectedly if a separate process opens the file. 

Our hand-specialization experiments showed that 
locating all components of the kernel that affect the 
state of quasi-invariants can be more difficult than 
the task of crafting specialized implementations. We 
have thus developed tools for locating kernel compo- 
nents that can potentially invalidate quasi-invariants, 
described in the following section. 

2.2 Guarding for Changes in Quasi- 
invariants 

We have developed two ways to locate kernel compo- 
nents that can potentially alter quasi-invariant state. 
One is based on type-checking the kernel source code, 
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Figure 1: Example: Specialization of a File Object 

and the other is based on fine-grained virtual mem- 
ory protection. These techniques are discussed at 
length in [8], but what they produce is a list of ker- 
nel source code statements that may violate quasi- 
invariant state. These writes to quasi-invariant state 
must be guarded. 

However, frequently such statements are access- 
ing heap-allocated data structures, and only a few of 
many of these structures actually control a specializa- 
tion, e.g. the quasi-invariant inode.refcount == 1 
may be true of some particular inode, but there are 
thousands of instances of the inode struct in the run- 
ning kernel. The guards placed around writes decide 
whether the write is to an actual quasi-invariant, or 
only a write to a value of the same type as a quasi- 
invariant. 

We distinguish among structs of the same type be- 
tween those that contain quasi-invariant terms and 
those that do not by inserting a Specialization IDen- 
tifier field (SID). In the case that the inode struct 
is the instance referred to in the quasi-invariant ex- 
pression, the SID field points to the specialized object 
that depends on that quasi-invariant.1 The special- 
ized object then performs the guarded write. For 
example, consider this update to inode.ref count: 

inode.refcount = some_value; 

1A more complex scheme is used when struct instances 
are shared among multiple specializations, which we omit for 
simplicity. 

A guarded update of the inode.ref count would be 
written as: 

inode_set_refcount(some_value,  SID); 

The inode_set_xef count function writes the 
inode.ref count field in any case, but also atom- 
ically adjusts any specialized components that 
depend on quasi-invariant expressions that depend 
on this inode.ref count value. 

2.3    Responding    to    Quasi-Invariant 
Changes: Replugging 

When a quasi-invariant is violated, the specialized 
object must adapt its specialized implementation of 
the facility to the new circumstance without relying 
on the quasi-invariant. One very common action to 
be taken by the specialized object is to replace the 
dependent specialized components with other, differ- 
ently specialized components, or with generic com- 
ponents. This replacement is called replugging, and 
requires fast, safe, concurrent dynamic linking. The 
problem is to facilitate very low latency execution of 
a function via an indirect function pointer, while con- 
currently allowing the pointer to be changed. Locks 
could be used, but locks may also substantially de- 
grade performance. In [7], we describe a portable 
algorithm that supports low-latency invocation of re- 
placeable functions while allowing concurrent update 
of pointers to those functions. 



3    Translation & Specialization 

Our previous efforts have manually applied our var- 
ious specialization tools [7, 8, 16, 17]. Automatic 
translation of specialization plans should convert the 
high level specification of how to specialize the system 
into running code that integrates the various compo- 
nents. 

3.1    Specialization Plans 

The specialization plan describes all possible ways in 
which the facility can be specialized. Given a list 
of quasi-invariants, there is an exponential number of 
combinations of such invariants, resulting in an expo- 
nential number of specialized functions. Specializa- 
tion classes allow the programmer to specify which 
combinations are important, and thus should be ex- 
ploited. 

The specialization plan is translated into a code 
template for a specialized object, and two lists. The 
code manages the data structures described in Fig- 
ure 1. The lists describe each specialization class, and 
are fed to other specialization tools as follows: 

specializable 
functions 

quasi- 
invariant s 

The list of specializable func- 
tions is taken from the spe- 
cialization plan and built into 
the specialized object, and is 
fed to the Tempo partial eval- 
uator (see Section 3.2). 

The list of quasi-invariants is 
fed to the guarding tools, and 
to Tempo. 

3.2    Partial Evaluation 

A specialization class declares an opportunity 
for specialization, and is described by a list of 
(quasi-)invariants. If all the predicate condi- 
tions are of the form variable = const .value or 
struct.field-name = const_value, the specialized 
implementations can be automatically derived by a 
partial evaluator. Notice that such an automatic 
tool could be extended to deal with other classes of 
predicate conditions, e.g. of the form variable < 
const_value. If the complexity of the predicates is 
beyond the current capabilities of the partial evalua- 
tor, the programmer can still provide a hand-written 
implementation. 

We are using Tempo, a partial evaluator for C pro- 
grams developed at IRIS A, [5, 6, 4]. Given a program 

and part of its inputs, it generates a specialized ver- 
sion of the program in which all the computations de- 
pending on the known inputs are performed. Tempo 
processes a program in two phases. 

First, an analysis is performed, to decide which 
parts of the program are to be reduced (eliminated), 
and which other are to be left in the specialized 
program. Note that the analysis phase doesn't 
need the concrete values, it just propagates the 
known/unknown information. The interface to this 
first phase is the analysis context, which contains: 

• a list of the known inputs, which can be either 
variables or struct field names 

• a list of the functions to be specialized 

In a second phase, the program is specialized, based 
on the annotations produced by the first phase and 
some concrete values for each known input previously 
declared. The interface to this second phase is the 
specialization context, binding an actual value to each 
invariant variable. 

4    Related Work 
Object-oriented OS research has advanced the state 
of the art in the interface provided to applica- 
tions, and advanced the ability of operating sys- 
tems to be dynamically configured. In particular, 
Choices [2, 11], AL-l/D [15], and Apertos [18] have 
investigated ways in which object-orientation can be 
used for OS re-configuration. Kiczales has been ex- 
ploring the general question of how objects can be 
used as a meta-interface [13]. 

OS customization has also been studied outside the 
00 community. The SPIN project allows replace- 
ment OS components to be loaded into the kernel. 
SPIN uses a combination of static type checking and 
run-time checks to bound the damage potential of re- 
placement components, but leaves the correctness of 
applying a specialization up to the application. The 
Aegis project provides more customizability by plac- 
ing most OS functionality in a user-level library at- 
tached to user applications [10]. We discuss some of 
these approaches in [9]. 

At the language level, specialization classes are 
similar to Chambers' predicate classes [3], which al- 
low, for example, the class of a buffer object to de- 
pend on whether the buffer is full, partially-full, or 
empty. Specialization classes can be thought of as an 
implementation of predicate classes in which guard- 
ing is used to change the class of an object in response 



to independent, concurrent events; this idea is hinted 
at in reference [3], but was not fully worked out or 
implemented. Specialization classes can also be ap- 
plied to systems written in a language such as C, in 
which the objects are more conceptual than real. 

Specialization plans are similar to the Aster 
distributed application configuration language [12]. 
Aster operates at a higher level, using predicates that 
cannot be checked mechanically, but can be reasoned 
about mechanically. 

5    Future Research 

We have proposed an object-oriented, mostly declar- 
ative model for specifying specializations in long- 
running programs such as operating systems. In the 
near term, we expect to demonstrate the utility of 
this programming model for enhancing flexibility and 
performance in operating systems through specializa- 
tion. Subsequently, we hope that this model will 
prove itself to be a valuable addition to the family 
of modularity techniques. 
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